Video lecture for this chapter
Johaness Kepler (lived 1571--1630 C.E.) was hired by Tycho Brahe to work out the mathematical details of Tycho's version of the geocentric universe. Kepler was a religious individualist. He did not go along with the Roman Catholic Church or the Lutherans. He had an ardent mystical neoplatonic faith. He wanted to work with the best observational data available because he felt that even the most elegant, mathematically-harmonious theories must match reality. Kepler was motivated by his faith in God to try to discover God's plan in the universe---to ``read the mind of God.'' Kepler shared the Greek view that mathematics was the language of God. He knew that all previous models were inaccurate, so he believed that other scientists had not yet ``read the mind of God.''
Since an infinite number of models are possible (see Plato's Instrumentalism above), he had to choose one as a starting point. Although he was hired by Tycho to work on Tycho's geocentric model, Kepler did not believe in either Tycho's model or Ptolemy's model (he thought Ptolemy's model was mathematically ugly). His neoplatonic faith led him to choose Copernicus' heliocentric model over his employer's model
Kepler tried to refine Copernicus' model. After years of failure, he was finally convinced with great reluctance of an revolutionary idea: God uses a different mathematical shape than the circle. This idea went against the 2,000 year-old Pythagorean paradigm of the perfect shape being a circle! Kepler had a hard time convincing himself that planet orbits are not circles and his contemporaries, including the great scientist Galileo, disagreed with Kepler's conclusion. He discovered that planetary orbits are ellipses with the Sun at one focus. This is now known as Kepler's 1st law.
An ellipse is a squashed circle that can be drawn by punching two thumb tacks into some paper, looping a string around the tacks, stretching the string with a pencil, and moving the pencil around the tacks while keeping the string taut. The figure traced out is an ellipse and the thumb tacks are at the two foci of the ellipse. An oval shape (like an egg) is not an ellipse: an oval tapers at only one end, but an ellipse is tapered at both ends (Kepler had tried oval shapes but he found they did not work).
There are some terms I will use frequently in the rest of this book that are used in discussing any sort of orbit. Here is a list of definitions:
As the foci are moved farther apart from each other, the ellipse becomes more eccentric (skinnier). See the figure below. A circle is a special form of an ellipse that has the two foci at the same point (the center of the ellipse).
Planet orbits have small eccentricities (nearly circular orbits) which is why astronomers before Kepler thought the orbits were exactly circular. This slight error in the orbit shape accumulated into a large error in planet positions after a few hundred years. Only very accurate and precise observations can show the elliptical character of the orbits. Tycho's observations, therefore, played a key role in Kepler's discovery and is an example of a fundamental breakthrough in our understanding of the universe being possible only from greatly improved observations of the universe.
Most comet orbits have large eccentricities (some are so eccentric that the aphelion is around 100,000 AU while the perihelion is less than 1 AU!). The figure above illustrates how the shape of an ellipse depends on the semi-major axis and the eccentricity. The eccentricity animation above shows changing eccentricities but the semi-major axis remains the same. Notice where the Sun is for each of the orbits. As the eccentricity increases, the Sun's position is closer to one side of the elliptical orbit, but the semi-major axis remains the same.
To account for the planets' motion (particularly Mars') among the stars, Kepler found that the planets must move around the Sun at a variable speed. When the planet is close to perihelion, it moves quickly; when it is close to aphelion, it moves slowly. This was another break with the Pythagorean paradigm of uniform motion! Kepler discovered another rule of planet orbits: a line between the planet and the Sun sweeps out equal areas in equal times. This is now known as Kepler's 2nd law.
Select the image to show an animation of Kepler's 3 laws.
Later, scientists found that this is a consequence of the conservation of angular momentum. The angular momentum of a planet is a measure of the amount of orbital motion it has and does NOT change as the planet orbits the Sun. It equals the (planet mass) × (planet's transverse speed) × (distance from the Sun). The transverse speed is the amount of the planet's orbital velocity that is in the direction perpendicular to the line between the planet and the Sun. If the distance decreases, then the speed must increase to compensate; if the distance increases, then the speed decreases (a planet's mass does not change).
Finally, after several more years of calculations, Kepler found a simple, elegant equation relating the distance of a planet from the Sun to how long it takes to orbit the Sun (the planet's sidereal period). (One planet's sidereal period/another planet's sidereal period)2 = (one planet's average distance from Sun/another planet's average distance from Sun)3. Recall that the semi-major axis is the average distance from the Sun (average of perihelion and aphelion). If you compare the planets to the Earth (with an orbital period = 1 year and a distance = 1 A.U.), then you get a very simple relation: (a planet's sidereal period in years)2 = (semi-major axis of its orbit in A.U.)3. This is now known as Kepler's 3rd law. A review of exponents and square roots is available in the mathematics review appendix.
For example, Mars' orbit has a semi-major axis of 1.52 A.U., so 1.523 = 3.51 and this equals 1.872. The number 1.87 is the number of years it takes Mars to go around the Sun. This simple mathematical equation explained all of the observations throughout history and proved to Kepler that the heliocentric system is real. Actually, the first two laws were sufficient, but the third law was very important for Isaac Newton and is used today to determine the masses of many different types of celestial objects. Kepler's third law has many uses in astronomy! Although Kepler derived these laws for the motions of the planets around the Sun, they are found to be true for any object orbiting any other object. The fundamental nature of these rules and their wide applicability is why they are considered ``laws'' of nature.
Kepler's 3rd law relates the orbital period to the orbit's size (the semi-major axis). The orbital period does not depend on the eccentricity of the orbit. As long as the semi-major axis is the same, then orbits of different eccentricities around the same object will have the same orbital period. This is illustrated in this Kepler's 3rd law with different eccentricity video.
One final note about Kepler's Third Law: when you plug in different numbers for the semi-major axis (distance), you will see that the corresponding orbit period (time) number gets bigger faster than the corresponding distance number. An orbit twice as big in semi-major axis will have an orbital period more than twice as long; an orbit three times as big in distance will have an orbital period more than three times as long, etc. That's a handy rule of thumb to use to see if your calculation "makes sense", i.e., a check to see if you entered the right exponent powers for the distance and period: period is squared while distance is cubed. A nice java applet for Kepler's laws is available on the web (select the link to view it in another window).
The UNL Astronomy Education program's Planetary Orbit Simulator allows you to manipulate the various parameters in Kepler's laws to understand their effect on planetary orbits (link will appear in a new window).
angular momentum | aphelion | eccentricity |
---|---|---|
ellipse | focus | Kepler's 1st law |
Kepler's 2nd law | Kepler's 3rd law | perihelion |
semi-major axis |
Go back to previous section -- Go to next section
last updated: January 21, 2022